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Implicit Large Eddy Simulation

Outline:

• What is ILES?

• What are its advantages?

• Historical perspective

• Why does it work?

• Some examples

len@lanl.gov 2



What is ILES

ILES is the direct application of a fluid solver to a high Reynolds
number fluid flow with no explicit turbulence model.

· The truncation terms of the algorithm serve as an effective
model of the effects of the unresolved scales.

· Fluid solvers based on Nonoscillatory Finite Volume (NFV)
approximations work effectively for ILES.

· Fluid solvers based on pseudospectral methods, leapfrog
methods, advective form methods, etc. do not work for ILES.

⇒ ILES appears to be a unique property of NFV methods.
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Some Advantages of ILES

• Computationally efficient

• Easy to implement

• Not necessary to know if the flow is turbulent;
the same solver can be used for all flows

• NFV methods are adaptive

• NFV methods have no parameters
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Early History of ILES

Boris, Oran, Grinstein, 1992: used FCT to model combusting
flows.

Linden, Redondo, Youngs, 1994: used van Leer schemes to
model fluid instabilities.

Porter, Pouquet, Woodward, 1994: used PPM to model
astrophysical jets (highly compressible flow)

Margolin, Smolarkiewicz, Sorbjan, 1999: used MPDATA to model
atmospheric boundary layers and global climate

Earliest description of ILES by Boris (1988)
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MPDATA Experience

MPDATA (Smolarkiewicz & Margolin, 1998) is an NFV method
based on iterated upwinding. It is not monotonicity preserving.
Some MPDATA examples of ILES application areas include:

• Atmospheric boundary layers; oceans; climate

• Idealized turbulence decay

• Solar convection

• Flows with strong shocks

• Fluid instabilities
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Some Underlying Ideas

Some basic ideas that underlie the ILES approach

• von Neumann & Richtmyer, 1951– artificial viscosity

• Smagorinsky, 1963 – subgrid scale models

• Hirt, 1969 – truncation terms vs. subgrid scale models

• Belotserkovskii, 1986 – flux form and computational stability

• Merriam, 1987 – monotonicity and the second law
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A Rationale for ILES

Our thesis can be succinctly stated as follows:

The success of ILES follows from the fact that NFV methods

accurately solve the equations that describe the dynamics of finite

volumes of fluid.

These equations differ from the Navier-Stokes PDEs, and
explicitly contain information about the volume over which one
averages.
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Volume Averaged Velocities – A Specific Example

We will define the volume-averaged velocities

ū(x, y) ≡ 1
∆x∆y

∫ x+1
2 ∆x

x−1
2 ∆x

∫ y+1
2 ∆y

y−1
2 ∆y

u(x′, y′) dx′ dy′ (1)

and

v̄(x, y) ≡ 1
∆x∆y

∫ x+1
2 ∆x

x−1
2 ∆x

∫ y+1
2 ∆y

y−1
2 ∆y

v(x′, y′) dx′ dy′ (2)

That is, here we have chosen a specific volume of integration, a
rectangle, that mimics a computational cell in a regular mesh.
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Finite Scale Navier-Stokes Equations in 2D

The final result for the finite-scale (volume-averaged) momentum
equations, to O(∆x2,∆y2) is:

∂ū

∂t
= − (ū2)x − (v̄ū)y − P̄x + ν (ūxx + ūyy) (3)

− 1
3

(
∆x

2

)2

[(ūxūx)x + (v̄xūx)y]−
1
3

(
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2

)2

[(ūyūy)x + (ūyv̄y)y]

∂v̄

∂t
= − (ūv̄)x − (v̄2)y − P̄y + ν (v̄xx + v̄yy) (4)

− 1
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2
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Inviscid Energy Dissipation

dEFS

dt
=
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Discussion Points

• The dynamics of finite volumes of fluid is governed by different
equations than Navier-Stokes; additional terms appear that
depend on the scales of the volumes.

• The truncation analysis of the discrete equations of NFV
algorithms contain similar terms.

• The finite-scale equations do not depend on the details of the
unresolved scales. This implies that the small scales are
enslaved by the larger scales.

A fuller comparison and discussion is included in the
accompanying paper.
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Some Examples

3D simulations of decaying turbulence using MPDATA
(Smolarkiewicz & Margolin, 1998).

resolution 2563

Initial setup in Herring & Kerr (1993).
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Comparisons with Pseudospectral Simulations

Time evolution of global enstrophy for three viscosities
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Probability Distribution Function (PDF) of Velocity

PDF for Velocity  
t=1.0  N=255
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Shows a Gaussian distribution, whose ”temperature” is the global
kinetic energy.
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Summary of Results

• Velocity PDFs are Maxwellian (Gaussian)

• Longitudinal velocity increments are skewed

• Verified Kolmogorov’s 4
5 law

• Verified scaling of spatial moments

• Demonstrated adaptivity of methods to explicit viscosity

Simulating turbulence may be easier than understanding
turbulence.
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